todavía no subo ningún tema porque aplico buscador y la weá ya está, pero a cambio apoyo con info Clasificación [editar] Las erupciones solares se clasifican como A, B, C, M o X dependiendo del pico de flujo de rayos X (en vatios por metro cuadrado, W/m2) de 100 a 800 picómetros en las inmediaciones de la Tierra, medidos en la nave GOES. Cada clase tiene un pico de flujo diez veces mayor que la anterior, teniendo las erupciones de clase X un pico del orden de 10-4 W/m2. Dentro de una clase hay una escala lineal de 1 a 9, así que una erupción X2 tiene dos veces la potencia de una X1, y es cuatro veces más potente que una M5. Las clases más potentes, M y X, están asociadas a menudo con varios efectos en el entorno espacial cercano a la Tierra. Aunque se suele usar la clasificación GOES para indicar el tamaño de una erupción, es sólo una medición. Dos de las erupciones GOES más grandes fueron los eventos X20 (2 mW/m2) registrados el 16 de agosto de 1989 y el 2 de abril de 2001. Sin embargo, estos dos eventos fueron eclipsados por una erupción el 4 de noviembre de 2003, que ha sido la erupción de rayos X más potente jamás registrada. Al principio se la clasificó como una X28 (2.8 mW/m2). Sin embargo, los detectores de GOES quedaron saturados durante el pico de la erupción, y actualmente se piensa que realmente estuvo entre X40 (4.0 mW/m2) y X45 (4.5 mW/m2), basándose en la influencia del evento sobre la afmósfera terrestre (véase [1]). La erupción se originó en la región de manchas 10486, que se muestra en la ilustración anterior varios días después del evento. Se cree que la erupción más poderosa de los últimos 500 años sucedió en septiembre de 1859: fue observada por el astrónomo británico Richard Carrington y dejó rastros en el hielo de Groenlandia en forma de nitratos y berilio-10, que permite medir su potencia aún hoy (New Scientist, 2005). Peligros [editar] Las erupciones solares están asociadas a eyecciones de masa coronal (CME) influyen mucho nuestra meteorología solar local. Producen flujos de partículas muy energéticas en el viento solar y la magnetosfera terrestre que pueden presentar peligros por radiación para naves espaciales y astronautas. El flujo de rayos X de la clase X de erupciones incrementa la ionización de la atmósfera superior, y esto puede interferir con las comunicaciones de radio en onda corta, y aumentar el rozamiento con los satélites en órbita baja, que lleva a decaimiento orbital. La presencia de estas partículas energéticas en la magnetosfera contribuyen a la aurora boreal y a la aurora austral. Las erupciones solares liberan una cascada de partículas de alta energía conocida como tormenta de protones. Los protones pueden atravesar el cuerpo humano, provocando daño bioquímico. La mayoría de estas tormentas tardan dos o más horas en llegar a la Tierra tras su detección visual. Una erupción ocurrida el 20 de enero de 2005 liberó la concentración de protones más alta medida directamente, que tardó sólo 15 minutos en llegar a la Tierra tras su observación. El riesgo de irradiación que suponen las erupciones solares y CME es una de las mayores preocupaciones en cuanto a las misiones tripuladas a Marte o a la Luna. Se necesitaría algún tipo de blindaje físico o magnético para proteger a los astronautas. Al principio se creía que éstos tendrían dos horas para alcanzar algún refugio. Basándose en el evento del 20 de enero de 2005, podrían tener tan poco como 15 minutos para hacerlo. Como pueden ver... todavía estamos vivos... ojalá que no aparezca un weón que diga que el HAARP causó la mancha solar La evolución de una mancha solar [editar] Las manchas solares aparecen, crecen, cambian de dimensiones y de aspecto y luego desaparecen tras haber existido tras una o dos rotaciones solares, es decir durante uno o dos meses, aunque su vida media es aproximadamente dos semanas. Suelen aparecer por parejas. Primero se observa una formación brillante, la fácula luego un poro, un intersticio entre la granulación de la fotoesfera que empieza a oscurecerse. Al día siguiente ya hay una pequeña mancha, mientras en el poro gemelo a unos pocos grados de distancia aparece otra mancha. A los pocos días ambas manchas tienen el aspecto característico: una región central oscura llamada sombra con temperaturas alrededor de 2500 K y brillo un 20% de la fotoesfera, rodeada de una zona grisácea y con aspecto filamentoso, la penumbra, con temperaturas alrededor de 3300 K y brillo un 75% de la fotoesfera. Los filamentos claros y oscuros tienen una dirección radial. Los gránulos de la penumbra tienen también forma alargada de tamaños 0,5” a 2” y sus tiempos de vida son mucho mayores que los gránulos ordinarios desde 40 minutos a 3 horas. Junto a estas dos manchas principales aparecen otras más pequeñas. Todas las manchas tienen movimientos propios con velocidades de hasta centenares de kilómetros por hora. El grupo de manchas alcanza su máxima complejidad hacia el décimo día. Las dos manchas principales de cada grupo se comportan como si fuesen los polos de un enorme y potente imán ya que entre ambos existe un campo magnético con una intensidad entre 0,2 y 0,4 T mientras que el campo magnético terrestre tiene una intensidad de sólo 0,05 mT. La mancha que está al oeste solar se llama conductora y la que está al este solar conducida. En casi todos los grupos el eje entre las dos manchas no se dispone en la dirección este-oeste sino que la mancha conductora está en ambos hemisferios más cercana al Ecuador. Se ha observado que a bajas altitudes existe un flujo de materia desde la sombra hacia la penumbra a una velocidad de 2000 m/s (efecto Evershed) y de fuera hacia adentro en altitudes mayores como la cromosfera (efecto Evershed inverso). Relación de las manchas solares y fenómenos terrestres [editar] Se han efectuado intentos de relacionar el ciclo de 11 años de las manchas solares con fenómenos cíclicos de la Tierra, como variaciones del clima, periodos de lluvia y sequía, variación en la longitud del día. Ya hemos visto una correlación clara entre el crecimiento de los anillos de los árboles y la actividad solar. Aparte de ésta, las pocas correlaciones de este tipo que son razonablemente fiables parecen deberse a ligeras variaciones del flujo de energía total emitido por el Sol y a las tremendas perturbaciones magnéticas que podrían afectar a la parte superior de nuestra atmósfera. Esto podría influir en el clima terrestre. Más clara es su relación con el estado de la ionosfera. Ello puede ayudar a predecir las condiciones de propagación de la onda corta o las comunicaciones por satélite. Se puede por tanto hablar de un tiempo espacial. Sucesos destacables [editar] El 1 de septiembre de 1859 el Sol emitió una señal luminosa sumamente poderosa, que en la Tierra interrumpió el servicio telegráfico. La aurora boreal causada en nuestra atmósfera fue visible en lugares tan al sur como La Habana, Hawái, Roma y Madrid. Una actividad similar se percibió en el hemisferio sur. La señal luminosa más poderosa observada por el instrumental de un satélite empezó el 4 de noviembre de 2003 a las 19:29 UTC, y saturó los instrumentos durante 11 minutos. La Región 486 parece haber producido un flujo de rayos X. Las observaciones holográficas y visuales indican actividad continuada en el Sol.